
LeetCode was HARD until I Learned these 15
Patterns
#21 - Patterns to master LeetCode

JUL 21, 2024

28 94 Sha

Having solved more than 1500 LeetCode problems, i there is one thing I have
learned, it’s this:

LeetCode is less about the number o problems you have solved and more about
how many patterns you know.

Learning patterns enables you to solve a wide variety o problems in lesser time and
helps you quickly identiy the right approach to a problem you have never seen beo

ASHISH PRATAP SINGH

1,239

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 1/24



In this article, I’ll walk you through the 15 most important patterns I learned that
made my LeetCode journey lot less painul.

I’ll share when to use each pattern along with a sample problem and provide links t
LeetCode problems you can practice to learn these patterns better.

Prex Sum involves preprocessing an array to create a new array where each eleme

at index i represents the sum o the array rom the start up to i. This allows or
ecient sum queries on subarrays.

Use this pattern when you need to perorm multiple sum queries on a subarray or n
to calculate cumulative sums.

Given an array nums, answer multiple queries about the sum o elements within a

specic range [i, j].

Example:

1. Prefix Sum

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 2/24



Input: nums = [1, 2, 3, 4, 5, 6], i = 1, j = 3

Output: 9

1. Preprocess the array A to create a prex sum array: P = [1, 3, 6, 10, 15,

21].

2. To nd the sum between indices i and j, use the ormula: P[j] - P[i-1].

1. Range Sum Query - Immutable (LeetCode #303)

2. Contiguous Array (LeetCode #525)

3. Subarray Sum Equals K (LeetCode #560)

The Two Pointers pattern involves using two pointers to iterate through an array or
list, ofen used to nd pairs or elements that meet specic criteria.

Explanation:

LeetCode Problems:

2. Two Pointers

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 3/24



Use this pattern when dealing with sorted arrays or lists where you need to nd pai
that satisy a specic condition.

Find two numbers in a sorted array that add up to a target value.

Example:

Input: nums = [1, 2, 3, 4, 6], target = 6

Output: [1, 3]

1. Initialize two pointers, one at the start (left) and one at the end (right) o the
array.

2. Check the sum o the elements at the two pointers.

3. I the sum equals the target, return the indices.

4. I the sum is less than the target, move the lef pointer to the right.

5. I the sum is greater than the target, move the right pointer to the lef.

1. Two Sum II - Input Array is Sorted (LeetCode #167)

2. 3Sum (LeetCode #15)

3. Container With Most Water (LeetCode #11)

Sample Problem:

Explanation:

LeetCode Problems:

3. Sliding Window

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 4/24



The Sliding Window pattern is used to nd a subarray or substring that satises a
specic condition, optimizing the time complexity by maintaining a window o
elements.

Use this pattern when dealing with problems involving contiguous subarrays or
substrings.

Find the maximum sum o a subarray o size k.

Example:

Input: nums = [2, 1, 5, 1, 3, 2], k = 3

Output: 9

1. Start with the sum o the rst k elements.

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 5/24



2. Slide the window one element at a time, subtracting the element that goes out o
the window and adding the new element.

3. Keep track o the maximum sum encountered.

1. Maximum Average Subarray I (LeetCode #643)

2. Longest Substring Without Repeating Characters (LeetCode #3)

3. Minimum Window Substring (LeetCode #76)

The Fast & Slow Pointers (Tortoise and Hare) pattern is used to detect cycles in link
lists and other similar structures.

Detect i a linked list has a cycle.

LeetCode Problems:

4. Fast & Slow Pointers

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 6/24



1. Initialize two pointers, one moving one step at a time (slow) and the other movi
two steps at a time (fast).

2. I there is a cycle, the ast pointer will eventually meet the slow pointer.

3. I the ast pointer reaches the end o the list, there is no cycle.

1. Linked List Cycle (LeetCode #141)

2. Happy Number (LeetCode #202)

3. Find the Duplicate Number (LeetCode #287)

Subscribe to receive new articles every week.

The In-place Reversal o a LinkedList pattern reverses parts o a linked list without
using extra space.

LeetCode Problems:

5. LinkedList In-place Reversal

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 7/24



Use this pattern when you need to reverse sections o a linked list.

Reverse a sublist o a linked list rom position m to n.

Example:

Input: head = [1, 2, 3, 4, 5], m = 2, n = 4

Output: [1, 4, 3, 2, 5]

1. Identiy the start and end o the sublist.

2. Reverse the nodes in place by adjusting the pointers.

1. Reverse Linked List (LeetCode #206)

2. Reverse Linked List II (LeetCode #92)

3. Swap Nodes in Pairs (LeetCode #24)

Sample Problem:

Explanation:

LeetCode Problems:

6. Monotonic Stack

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 8/24



The Monotonic Stack pattern uses a stack to maintain a sequence o elements in a

specic order (increasing or decreasing).

Use this pattern or problems that require nding the next greater or smaller eleme

Find the next greater element or each element in an array. Output -1 i the greater
element doesn’t exist.

Example:

Input: nums = [2, 1, 2, 4, 3]

Output: [4, 2, 4, -1, -1]

1. Use a stack to keep track o elements or which we haven't ound the next great

element yet.

2. Iterate through the array, and or each element, pop elements rom the stack un

you nd a greater element.

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 9/24



3. I the stack is not empty, set the result or index at the top o the stack to curren
element.

4. Push the current element onto the stack.

1. Next Greater Element I (LeetCode #496)

2. Daily Temperatures (LeetCode #739)

3. Largest Rectangle in Histogram (LeetCode #84)

The Top 'K' Elements pattern nds the top k largest or smallest elements in an arra
or stream o data using heaps or sorting.

Find the k-th largest element in an unsorted array.

LeetCode Problems:

7. Top ‘K’ Elements

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 10/24



Example:

Input: nums = [3, 2, 1, 5, 6, 4], k = 2

Output: 5

1. Use a min-heap o size k to keep track o the k largest elements.

2. Iterate through the array, adding elements to the heap.

3. I the heap size exceeds k, remove the smallest element rom the heap.

4. The root o the heap will be the k-th largest element.

1. Kth Largest Element in an Array (LeetCode #215)

2. Top K Frequent Elements (LeetCode #347)

3. Find K Pairs with Smallest Sums (LeetCode #373)

Explanation:

LeetCode Problems:

8. Overlapping Intervals

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 11/24



The Overlapping Intervals pattern is used to merge or handle overlapping intervals
an array.

In an interval array sorted by start time, two intervals [a, b] and [c, d] overlap i

>= c (i.e., the end time o the rst interval is greater than or equal to the start time

the second interval).

Problem Statement: Merge all overlapping intervals.

Example:

Input: intervals = [[1, 3], [2, 6], [8, 10], [15, 18]]

Output: [[1, 6], [8, 10], [15, 18]]

1. Sort the intervals by their start time.

2. Create an empty list called merged to store the merged intervals.

3. Iterate through the intervals and check i it overlaps with the last interval in th

merged list.

4. I it overlaps, merge the intervals by updating the end time o the last interval i

merged.

5. I it does not overlap, simply add the current interval to the merged list.

1. Merge Intervals (LeetCode #56)

2. Insert Interval (LeetCode #57)

3. Non-Overlapping Intervals (LeetCode #435)

Sample Problem:

Explanation:

LeetCode Problems:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 12/24



The Modied Binary Search pattern adapts binary search to solve a wider range o

problems, such as nding elements in rotated sorted arrays.

Use this pattern or problems involving sorted or rotated arrays where you need to 

a specic element.

Find an element in a rotated sorted array.

Example:

Input: nums = [4, 5, 6, 7, 0, 1, 2], target = 0

Output: 4

1. Perorm binary search with an additional check to determine which hal o the
array is sorted.

2. We then check i the target is within the range o the sorted hal.

3. I it is, we search that hal; otherwise, we search the other hal.

9. Modified Binary Search

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 13/24



1. Search in Rotated Sorted Array (LeetCode #33)

2. Find Minimum in Rotated Sorted Array (LeetCode #153)

3. Search a 2D Matrix II (LeetCode #240)

Binary Tree Traversal involves visiting all the nodes in a binary tree in a specic ord

PreOrder: root -> left -> right

InOrder: left -> root -> right

PostOrder: left -> right -> root

Problem Statement: Perorm inorder traversal o a binary tree.

Example:

Input: root = [1, null, 2, 3]

LeetCode Problems:

10. Binary Tree Traversal

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 14/24



Output: [1, 3, 2]

1. Inorder traversal visits nodes in the order: lef, root, right.

2. Use recursion or a stack to traverse the tree in this order.

1. PreOrder→ Binary Tree Paths (LeetCode #257)

2. InOrder→ Kth Smallest Element in a BST (LeetCode #230)

3. PostOrder→ Binary Tree Maximum Path Sum (LeetCode #124)

Depth-First Search (DFS) is a traversal technique that explores as ar down a branch

possible beore backtracking.

Use this pattern or exploring all paths or branches in graphs or trees.

Explanation:

LeetCode Problems:

11. Depth-First Search (DFS)

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 15/24



Find all paths rom the root to leaves in a binary tree.

Example:

Input: root = [1, 2, 3, null, 5]

Output: ["1->2->5", "1->3"]

1. Use recursion or a stack to traverse each path rom the root to the leaves.

2. Record each path as you traverse.

1. Clone Graph (LeetCode #133)

2. Path Sum II (LeetCode #113)

3. Course Schedule II (LeetCode #210)

Sample Problem:

Explanation:

LeetCode Problems:

12. Breadth-First Search (BFS)

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 16/24



Breadth-First Search (BFS) is a traversal technique that explores nodes level by leve
a tree or graph.

Use this pattern or nding the shortest paths in unweighted graphs or level-order
traversal in trees.

Perorm level-order traversal o a binary tree.

Example:

Input: root = [3, 9, 20, null, null, 15, 7]

Output: [[3], [9, 20], [15, 7]]

1. Use a queue to keep track o nodes at each level.

2. Traverse each level and add the children o the current nodes to the queue.

1. Binary Tree Level Order Traversal (LeetCode #102)

2. Rotting Oranges (LeetCode #994)

3. Word Ladder (LeetCode #127)

Sample Problem:

Explanation:

LeetCode Problems:

13. Matrix Traversal

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 17/24



Matrix Traversal involves traversing elements in a matrix using dierent technique
(DFS, BFS, etc.).

Use this pattern or problems involving traversing 2D grids or matrices horizontally
vertically or diagonally.

Perorm ood ll on a 2D grid. Change all the cells connected to the starting cell to
new color.

Example:

Input: image = [[1,1,1],[1,1,0],[1,0,1]], sr = 1, sc = 1, newColor =

Output: [[2,2,2],[2,2,0],[2,0,1]]

1. Use DFS or BFS to traverse the matrix starting rom the given cell.

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 18/24



2. Change the color o the connected cells to the new color.

1. Flood Fill (LeetCode #733)

2. Number of Islands (LeetCode #200)

3. Surrounded Regions (LeetCode #130)

Backtracking explores all possible solutions and backtracks when a solution path a

Use this pattern when you need to nd all (or some) solutions to a problem that

satises given constraints. For example: combinatorial problems, such as generatin
permutations, combinations, or subsets.

LeetCode Problems:

14. Backtracking

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 19/24



Generate all permutations o a given list o numbers.

Example:

Input: nums = [1, 2, 3]

Output: [[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]]

1. Use recursion to generate permutations.

2. For each element, include it in the current permutation and recursively generat
the remaining permutations.

3. Backtrack when all permutations or a given path are generated.

1. Permutations (LeetCode #46)

2. Subsets (LeetCode #78)

3. N-Queens (LeetCode #51)

Explanation:

LeetCode Problems:

15. Dynamic Programming Patterns

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 20/24



Dynamic Programming (DP) involves breaking down problems into smaller
subproblems and solving them using a bottom-up or top-down approach.

Use this pattern or problems with overlapping subproblems and optimal substruct

DP itsel has multiple sub-patterns. Some o the most important ones are:

Fibonacci Numbers

0/1 Knapsack

Longest Common Subsequence (LCS)

Longest Increasing Subsequence (LIS)

Subset Sum

Matrix Chain Multiplication

For more Dynamic Programming Patterns, checkout my other article:

20 Patterns to Master Dynamic Programming
ASHISH PRATAP SINGH · 28 JULY 2024
Read full story

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 21/24



Calculate the n-th Fibonacci number.

Example:

Input: n = 5

Output: 5 (The rst ve Fibonacci numbers are 0, 1, 1, 2, 3, 5)

1. Use a bottom-up approach to calculate the n-th Fibonacci number.

2. Start with the rst two numbers (0 and 1) and iterate to calculate the next numb

like (dp[i] = dp[i - 1] + dp[i - 2]).

1. Climbing Stairs (LeetCode #70)

2. House Robber (LeetCode #198)

3. Coin Change (LeetCode #322)

4. Longest Common Subsequence (LCS) (LeetCode #1143)

5. Longest Increasing Subsequence (LIS) (LeetCode #322)

6. Partition Equal Subset Sum (LeetCode #416)

Thank you so much or reading.

I you ound it valuable, hit a like and consider subscribing or more such conte
every week.

I you have any questions or suggestions, leave a comment.

This post is public so feel free to share it.

p

Explanation:

LeetCode Problems:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 22/24


