14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

LeetCode was HARD until | Learned these 15
Patterns

#21 - Patterns to master LeetCode
@\ ASHISH PRATAP SINGH

: JUL 21, 2024

O 1,239 () 28 5 94 She
Having solved more than 1500 LeetCode problems, if there is one thing I have

learned, it’s this:

LeetCode is less about the number of problems you have solved and more about

how many patterns you know.

Learning patterns enables you to solve a wide variety of problems in lesser time anc

helps you quickly identify the right approach to a problem you have never seen befc

LeetCode Patterns
arey >[N —
(o
7 —/
Stack > 51 ]

©-

/T
o 00

Top K(=3) 9‘/ \'m

blog.algomaster.io

https://blog.algomaster.io/p/15-leetcode-patterns

1/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

In this article, I’ll walk you through the 15 most important patterns I learned that

made my LeetCode journey lot less painful.

I'll share when to use each pattern along with a sample problem and provide links t

LeetCode problems you can practice to learn these patterns better.

1. Prefix Sum

Prefix Sum

blog.algomaster.io

Prefix Sum involves preprocessing an array to create a new array where each eleme
at index i represents the sum of the array from the start up to i. This allows for

efficient sum queries on subarrays.

Use this pattern when you need to perform multiple sum queries on a subarray or n

to calculate cumulative sums.

Sample Problem:

Given an array nums, answer multiple queries about the sum of elements within a

specific range [1, j].

Example:

https://blog.algomaster.io/p/15-leetcode-patterns 2/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

e Input:nums = [1, 2, 3, 4, 5, 6],i = 1,j = 3

¢ OQutput: 9

Explanation:

1. Preprocess the array A to create a prefix sum array: P = [1, 3, 6, 10, 15,
21].

2. To find the sum between indices i and j, use the formula: P[j] - P[i-1].

LeetCode Problems:

1. Range Sum Query - Immutable (LeetCode #303)

2. Contiguous Array (LeetCode #525)

3. Subarray Sum Equals K (LeetCode #560)

2. Two Pointers

Two Pointers

left right

blog.algomaster.io

The Two Pointers pattern involves using two pointers to iterate through an array o:

list, often used to find pairs or elements that meet specific criteria.

https://blog.algomaster.io/p/15-leetcode-patterns 3/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

Use this pattern when dealing with sorted arrays or lists where you need to find pai

that satisfy a specific condition.

Sample Problem:

Find two numbers in a sorted array that add up to a target value.
Example:

e Input:nums = [1, 2, 3, 4, 6],target = 6

e OQOutput: [1, 3]

Explanation:

1. Initialize two pointers, one at the start (Left) and one at the end (right) of the

array.

2. Check the sum of the elements at the two pointers.

3. If the sum equals the target, return the indices.

4. If the sum is less than the target, move the left pointer to the right.

5. If the sum is greater than the target, move the right pointer to the left.

LeetCode Problems:

1. Two Sum II - Input Array is Sorted (LeetCode #167)

2. 3Sum (LeetCode #15)

3. Container With Most Water (LeetCode #11)

3. Sliding Window

https://blog.algomaster.io/p/15-leetcode-patterns 4/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

Sliding Window

blog.algomaster.io

The Sliding Window pattern is used to find a subarray or substring that satisfies a
specific condition, optimizing the time complexity by maintaining a window of

elements.

Use this pattern when dealing with problems involving contiguous subarrays or

substrings.

Sample Problem:

Find the maximum sum of a subarray of size k.

Example:

e Input:nums = [2, 1, 5, 1, 3, 2],k = 3

¢ OQutput: 9

Explanation:

1. Start with the sum of the first k elements.

https://blog.algomaster.io/p/15-leetcode-patterns 5/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

2. Slide the window one element at a time, subtracting the element that goes out-

the window and adding the new element.

3. Keep track of the maximum sum encountered.

LeetCode Problems:

1. Maximum Average Subarray I (LeetCode #643)

2. Longest Substring Without Repeating Characters (LeetCode #3)

3. Minimum Window Substring (LeetCode #76)

4. Fast & Slow Pointers

Fast and Slow Pointers

-8 E ] 0
T

T
slow fast

blog.algomaster.io

The Fast & Slow Pointers (Tortoise and Hare) pattern is used to detect cycles in link

lists and other similar structures.

Sample Problem:

Detect if a linked list has a cycle.

Explanation:

https://blog.algomaster.io/p/15-leetcode-patterns 6/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns
1. Initialize two pointers, one moving one step at a time (slow) and the other mov
two steps at a time (fast).
2. If there is a cycle, the fast pointer will eventually meet the slow pointer.

3. If the fast pointer reaches the end of the list, there is no cycle.

LeetCode Problems:

1. Linked List Cycle (LeetCode #141)

2. Happy Number (LeetCode #202)
3. Find the Duplicate Number (LeetCode #287)

Subscribe to receive new articles every week.

5. LinkedList In-place Reversal

Linked List In-place Reversal

B8B83 8
B-B-B-3-B8
T )

B B-85a 8

blog.algomaster.io

The In-place Reversal of a LinkedList pattern reverses parts of a linked list without

using extra space.

https://blog.algomaster.io/p/15-leetcode-patterns 7124



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

Use this pattern when you need to reverse sections of a linked list.

Sample Problem:

Reverse a sublist of a linked list from position m to n.

Example:

e Input:head = [1, 2, 3, 4, 5],m=2n =4

e OQutput: [1, 4, 3, 2, 5]

Explanation:
1. Identify the start and end of the sublist.

2. Reverse the nodes in place by adjusting the pointers.

LeetCode Problems:

1. Reverse Linked List (LeetCode #206)

2. Reverse Linked List IT (LeetCode #92)

3. Swap Nodes in Pairs (LeetCode #24)

6. Monotonic Stack

https://blog.algomaster.io/p/15-leetcode-patterns 8/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

Monotonic Stack

Array -

Stack -

blog.algomaster.io

The Monotonic Stack pattern uses a stack to maintain a sequence of elements in a

specific order (increasing or decreasing).

Use this pattern for problems that require finding the next greater or smaller elem

Sample Problem:

Find the next greater element for each element in an array. Output -1 if the greater

element doesn’t exist.
Example:

e Input:nums = [2, 1, 2, 4, 3]

e OQutput: [4, 2, 4, -1, -1]

Explanation:

1. Use a stack to keep track of elements for which we haven't found the next grea

element yet.

2. Iterate through the array, and for each element, pop elements from the stack w1

you find a greater element.

https://blog.algomaster.io/p/15-leetcode-patterns 9/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

3. If the stack is not empty, set the result for index at the top of the stack to curre

element.

4. Push the current element onto the stack.

LeetCode Problems:

1. Next Greater Element I (LeetCode #496)

2. Daily Temperatures (LeetCode #739)

3. Largest Rectangle in Histogram (LeetCode #84)

7. Top ‘K’ Elements

Top ‘K’ Elements

Array - SN 118 MON B

(O
Top K(=3) 9‘/ \m

blog.algomaster.io

The Top 'K' Elements pattern finds the top k largest or smallest elements in an arrsa

or stream of data using heaps or sorting.

Sample Problem:

Find the k-th largest element in an unsorted array.

https://blog.algomaster.io/p/15-leetcode-patterns



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

Example:

e Input:nums = [3, 2, 1, 5, 6, 4],k = 2

¢ Output: 5

Explanation:
1. Use a min-heap of size k to keep track of the k largest elements.
2. Iterate through the array, adding elements to the heap.
3. If the heap size exceeds k, remove the smallest element from the heap.

4. The root of the heap will be the k-th largest element.

LeetCode Problems:

1. Kth Largest Element in an Array (LeetCode #215)

2. Top K Frequent Elements (LeetCode #347)

3. Find K Pairs with Smallest Sums (LeetCode #373)

8. Overlapping Intervals

Overlapping Intervals

blog.algomaster.io

https://blog.algomaster.io/p/15-leetcode-patterns 11/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

The Overlapping Intervals pattern is used to merge or handle overlapping intervals

an array.

In an interval array sorted by start time, two intervals [a, b] and [c, d] overlap i
>= c (i.e., the end time of the first interval is greater than or equal to the start time

the second interval).

Sample Problem:

Problem Statement: Merge all overlapping intervals.
Example:

e Input:intervals = [[1, 3], [2, 6], [8, 10], [15, 18]]

e OQutput: [[1, 6], [8, 10], [15, 18]]

Explanation:
1. Sort the intervals by their start time.
2. Create an empty list called merged to store the merged intervals.

3. Iterate through the intervals and check if it overlaps with the last interval in th

merged list.

4. If it overlaps, merge the intervals by updating the end time of the last interval i

merged.

5. If it does not overlap, simply add the current interval to the merged list.

LeetCode Problems:

1. Merge Intervals (LeetCode #56)

2. Insert Interval (LeetCode #57)

3. Non-Overlapping Intervals (LeetCode #435)

https://blog.algomaster.io/p/15-leetcode-patterns 12/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

9. Modified Binary Search

Modified Binary Search

I - K
I

start mid end

blog.algomaster.io

The Modified Binary Search pattern adapts binary search to solve a wider range of

problems, such as finding elements in rotated sorted arrays.

Use this pattern for problems involving sorted or rotated arrays where you need to-

a specific element.

Sample Problem:

Find an element in a rotated sorted array.
Example:

e Input:nums = [4, 5, 6, 7, 0, 1, 2], target = 0@

¢ OQutput: 4

Explanation:

1. Perform binary search with an additional check to determine which half of the

array is sorted.
2. We then check if the target is within the range of the sorted half.

3. If it is, we search that half; otherwise, we search the other half.

https://blog.algomaster.io/p/15-leetcode-patterns 13/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

LeetCode Problems:

1. Search in Rotated Sorted Array (LeetCode #33)

2. Find Minimum in Rotated Sorted Array (LeetCode #153)
3. Search a 2D Matrix II (LeetCode #240)

10. Binary Tree Traversal

Binary Tree Traversal

PreOrder: root->left->right

9 m InOrder: left->root->right
@ @ PostOrder: left->right->root

blog.algomaster.io

Binary Tree Traversal involves visiting all the nodes in a binary tree in a specific or

e PreOrder: root -> left -> right
e InOrder: left -> root -> right

e PostOrder: left -> right -> root

Sample Problem:

Problem Statement: Perform inorder traversal of a binary tree.
Example:

e Input:root = [1, null, 2, 3]

https://blog.algomaster.io/p/15-leetcode-patterns 14/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns
e OQutput: [1, 3, 2]

Explanation:
1. Inorder traversal visits nodes in the order: left, root, right.

2. Use recursion or a stack to traverse the tree in this order.

LeetCode Problems:

1. PreOrder — Binary Tree Paths (LeetCode #257)

2. InOrder — Kth Smallest Element in a BST (LeetCode #230)

3. PostOrder — Binary Tree Maximum Path Sum (LeetCode #124)

11. Depth-First Search (DFS)

Depth-First Search (DFS)

blog.algomaster.io

Depth-First Search (DFS) is a traversal technique that explores as far down a brancl

possible before backtracking.

Use this pattern for exploring all paths or branches in graphs or trees.

https://blog.algomaster.io/p/15-leetcode-patterns 15/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

Sample Problem:

Find all paths from the root to leaves in a binary tree.
Example:

e Input:root = [1, 2, 3, null, 5]

e Output: ["1->2->5", "1->3"]

Explanation:

1. Use recursion or a stack to traverse each path from the root to the leaves.

2. Record each path as you traverse.

LeetCode Problems:

1. Clone Graph (LeetCode #133)

2. Path Sum II (LeetCode #113)

3. Course Schedule IT (LeetCode #210)

12. Breadth-First Search (BFS)

Breadth-First Search (BFS)

Q ———————— Level 1

Q m -------- Level 2
(13 I 15 Level 3

blog.algomaster.io

https://blog.algomaster.io/p/15-leetcode-patterns

16/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

Breadth-First Search (BFS) is a traversal technique that explores nodes level by leve

a tree or graph.

Use this pattern for finding the shortest paths in unweighted graphs or level-order

traversal in trees.

Sample Problem:

Perform level-order traversal of a binary tree.
Example:

e Input:root = [3, 9, 20, null, null, 15, 7]

e Output: [[3], [9, 20], [15, 7]]

Explanation:
1. Use a queue to keep track of nodes at each level.

2. Traverse each level and add the children of the current nodes to the queue.

LeetCode Problems:

1. Binary Tree Level Order Traversal (LeetCode #102)

2. Rotting Oranges (LeetCode #994)

3. Word Ladder (LeetCode #127)

13. Matrix Traversal

https://blog.algomaster.io/p/15-leetcode-patterns 17124



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

Matrix Traversal

blog.algomaster.io

Matrix Traversal involves traversing elements in a matrix using different technique
(DFS, BFS, etc.).

Use this pattern for problems involving traversing 2D grids or matrices horizontall

vertically or diagonally.

Sample Problem:

Perform flood fill on a 2D grid. Change all the cells connected to the starting cell tc

new color.
Example:

e Input:image = [[1,1,1],[1,1,0],[1,0,1]],sr = 1,sc = 1 newColor =

* Output: [[2,2,2],[2,2,0],[2,0,1]]

Explanation:

1. Use DFS or BFS to traverse the matrix starting from the given cell.

https://blog.algomaster.io/p/15-leetcode-patterns 18/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

2. Change the color of the connected cells to the new color.

LeetCode Problems:
1. Flood Fill (LeetCode #733)

2. Number of Islands (LeetCode #200)

3. Surrounded Regions (LeetCode #130)

14. Backtracking

Backtracking

blog.algomaster.io

Backtracking explores all possible solutions and backtracks when a solution path fz

Use this pattern when you need to find all (or some) solutions to a problem that
satisfies given constraints. For example: combinatorial problems, such as generatin

permutations, combinations, or subsets.

Sample Problem:

https://blog.algomaster.io/p/15-leetcode-patterns 19/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns
Generate all permutations of a given list of numbers.

Example:

e Input:nums = [1, 2, 3]

° Output: [[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]]

Explanation:
1. Use recursion to generate permutations.

2. For each element, include it in the current permutation and recursively generat

the remaining permutations.

3. Backtrack when all permutations for a given path are generated.

LeetCode Problems:

1. Permutations (LeetCode #46)

2. Subsets (LeetCode #78)

3. N-Queens (LeetCode #51)

15. Dynamic Programming Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 20/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns

Dynamic Programming

blog.algomaster.io

Dynamic Programming (DP) involves breaking down problems into smaller

subproblems and solving them using a bottom-up or top-down approach.
Use this pattern for problems with overlapping subproblems and optimal substruct
DP itself has multiple sub-patterns. Some of the most important ones are:

e Fibonacci Numbers

e 0/1 Knapsack

e Longest Common Subsequence (LCS)
e Longest Increasing Subsequence (LIS)
e Subset Sum

e Matrix Chain Multiplication

For more Dynamic Programming Patterns, checkout my other article:

. === 20 Patterns to Master Dynamic Programming
S ommmm g
ASHISH PRATAP SINGH - 28 JULY 2024

! m I Read full story ->

Sample Problem:

https://blog.algomaster.io/p/15-leetcode-patterns 21/24



14/02/2025, 09:48 LeetCode was HARD until | Learned these 15 Patterns
Calculate the n-th Fibonacci number.

Example:

® Input:n =5

e OQutput: 5 (The first five Fibonacci numbers are 0, 1, 1, 2, 3, 5)

Explanation:
1. Use a bottom-up approach to calculate the n-th Fibonacci number.
2. Start with the first two numbers (0 and 1) and iterate to calculate the next numt

like (dp[i] = dp[i - 1] + dp[i - 2]).

LeetCode Problems:

1. Climbing Stairs (LeetCode #70)

2. House Robber (LeetCode #198)

3. Coin Change (LeetCode #322)

4. Longest Common Subsequence (LCS) (LeetCode #1143)

5. Longest Increasing Subsequence (LIS) (LeetCode #322)

6. Partition Equal Subset Sum (LeetCode #416)

Thank you so much for reading.

If you found it valuable, hit a like @ and consider subscribing for more such conte

every week.
If you have any questions or suggestions, leave a comment.

This post is public so feel free to share it.

https://blog.algomaster.io/p/15-leetcode-patterns 22/24



