
LeetCode was HARD until I Learned these 15
Patterns
#21 - Patterns to master LeetCode

JUL 21, 2024

28 94 Sha

Having solved more than 1500 LeetCode problems, i there is one thing I have
learned, it’s this:

LeetCode is less about the number o problems you have solved and more about
how many patterns you know.

Learning patterns enables you to solve a wide variety o problems in lesser time and
helps you quickly identiy the right approach to a problem you have never seen beo

ASHISH PRATAP SINGH

1,239

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 1/24



In this article, I’ll walk you through the 15 most important patterns I learned that
made my LeetCode journey lot less painul.

I’ll share when to use each pattern along with a sample problem and provide links t
LeetCode problems you can practice to learn these patterns better.

Prex Sum involves preprocessing an array to create a new array where each eleme

at index i represents the sum o the array rom the start up to i. This allows or
ecient sum queries on subarrays.

Use this pattern when you need to perorm multiple sum queries on a subarray or n
to calculate cumulative sums.

Given an array nums, answer multiple queries about the sum o elements within a

specic range [i, j].

Example:

1. Prefix Sum

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 2/24



Input: nums = [1, 2, 3, 4, 5, 6], i = 1, j = 3

Output: 9

1. Preprocess the array A to create a prex sum array: P = [1, 3, 6, 10, 15,

21].

2. To nd the sum between indices i and j, use the ormula: P[j] - P[i-1].

1. Range Sum Query - Immutable (LeetCode #303)

2. Contiguous Array (LeetCode #525)

3. Subarray Sum Equals K (LeetCode #560)

The Two Pointers pattern involves using two pointers to iterate through an array or
list, ofen used to nd pairs or elements that meet specic criteria.

Explanation:

LeetCode Problems:

2. Two Pointers

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 3/24



Use this pattern when dealing with sorted arrays or lists where you need to nd pai
that satisy a specic condition.

Find two numbers in a sorted array that add up to a target value.

Example:

Input: nums = [1, 2, 3, 4, 6], target = 6

Output: [1, 3]

1. Initialize two pointers, one at the start (left) and one at the end (right) o the
array.

2. Check the sum o the elements at the two pointers.

3. I the sum equals the target, return the indices.

4. I the sum is less than the target, move the lef pointer to the right.

5. I the sum is greater than the target, move the right pointer to the lef.

1. Two Sum II - Input Array is Sorted (LeetCode #167)

2. 3Sum (LeetCode #15)

3. Container With Most Water (LeetCode #11)

Sample Problem:

Explanation:

LeetCode Problems:

3. Sliding Window

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 4/24



The Sliding Window pattern is used to nd a subarray or substring that satises a
specic condition, optimizing the time complexity by maintaining a window o
elements.

Use this pattern when dealing with problems involving contiguous subarrays or
substrings.

Find the maximum sum o a subarray o size k.

Example:

Input: nums = [2, 1, 5, 1, 3, 2], k = 3

Output: 9

1. Start with the sum o the rst k elements.

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 5/24



2. Slide the window one element at a time, subtracting the element that goes out o
the window and adding the new element.

3. Keep track o the maximum sum encountered.

1. Maximum Average Subarray I (LeetCode #643)

2. Longest Substring Without Repeating Characters (LeetCode #3)

3. Minimum Window Substring (LeetCode #76)

The Fast & Slow Pointers (Tortoise and Hare) pattern is used to detect cycles in link
lists and other similar structures.

Detect i a linked list has a cycle.

LeetCode Problems:

4. Fast & Slow Pointers

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 6/24



1. Initialize two pointers, one moving one step at a time (slow) and the other movi
two steps at a time (fast).

2. I there is a cycle, the ast pointer will eventually meet the slow pointer.

3. I the ast pointer reaches the end o the list, there is no cycle.

1. Linked List Cycle (LeetCode #141)

2. Happy Number (LeetCode #202)

3. Find the Duplicate Number (LeetCode #287)

Subscribe to receive new articles every week.

The In-place Reversal o a LinkedList pattern reverses parts o a linked list without
using extra space.

LeetCode Problems:

5. LinkedList In-place Reversal

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 7/24



Use this pattern when you need to reverse sections o a linked list.

Reverse a sublist o a linked list rom position m to n.

Example:

Input: head = [1, 2, 3, 4, 5], m = 2, n = 4

Output: [1, 4, 3, 2, 5]

1. Identiy the start and end o the sublist.

2. Reverse the nodes in place by adjusting the pointers.

1. Reverse Linked List (LeetCode #206)

2. Reverse Linked List II (LeetCode #92)

3. Swap Nodes in Pairs (LeetCode #24)

Sample Problem:

Explanation:

LeetCode Problems:

6. Monotonic Stack

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 8/24



The Monotonic Stack pattern uses a stack to maintain a sequence o elements in a

specic order (increasing or decreasing).

Use this pattern or problems that require nding the next greater or smaller eleme

Find the next greater element or each element in an array. Output -1 i the greater
element doesn’t exist.

Example:

Input: nums = [2, 1, 2, 4, 3]

Output: [4, 2, 4, -1, -1]

1. Use a stack to keep track o elements or which we haven't ound the next great

element yet.

2. Iterate through the array, and or each element, pop elements rom the stack un

you nd a greater element.

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 9/24



3. I the stack is not empty, set the result or index at the top o the stack to curren
element.

4. Push the current element onto the stack.

1. Next Greater Element I (LeetCode #496)

2. Daily Temperatures (LeetCode #739)

3. Largest Rectangle in Histogram (LeetCode #84)

The Top 'K' Elements pattern nds the top k largest or smallest elements in an arra
or stream o data using heaps or sorting.

Find the k-th largest element in an unsorted array.

LeetCode Problems:

7. Top ‘K’ Elements

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 10/24



Example:

Input: nums = [3, 2, 1, 5, 6, 4], k = 2

Output: 5

1. Use a min-heap o size k to keep track o the k largest elements.

2. Iterate through the array, adding elements to the heap.

3. I the heap size exceeds k, remove the smallest element rom the heap.

4. The root o the heap will be the k-th largest element.

1. Kth Largest Element in an Array (LeetCode #215)

2. Top K Frequent Elements (LeetCode #347)

3. Find K Pairs with Smallest Sums (LeetCode #373)

Explanation:

LeetCode Problems:

8. Overlapping Intervals

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 11/24



The Overlapping Intervals pattern is used to merge or handle overlapping intervals
an array.

In an interval array sorted by start time, two intervals [a, b] and [c, d] overlap i

>= c (i.e., the end time o the rst interval is greater than or equal to the start time

the second interval).

Problem Statement: Merge all overlapping intervals.

Example:

Input: intervals = [[1, 3], [2, 6], [8, 10], [15, 18]]

Output: [[1, 6], [8, 10], [15, 18]]

1. Sort the intervals by their start time.

2. Create an empty list called merged to store the merged intervals.

3. Iterate through the intervals and check i it overlaps with the last interval in th

merged list.

4. I it overlaps, merge the intervals by updating the end time o the last interval i

merged.

5. I it does not overlap, simply add the current interval to the merged list.

1. Merge Intervals (LeetCode #56)

2. Insert Interval (LeetCode #57)

3. Non-Overlapping Intervals (LeetCode #435)

Sample Problem:

Explanation:

LeetCode Problems:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 12/24



The Modied Binary Search pattern adapts binary search to solve a wider range o

problems, such as nding elements in rotated sorted arrays.

Use this pattern or problems involving sorted or rotated arrays where you need to 

a specic element.

Find an element in a rotated sorted array.

Example:

Input: nums = [4, 5, 6, 7, 0, 1, 2], target = 0

Output: 4

1. Perorm binary search with an additional check to determine which hal o the
array is sorted.

2. We then check i the target is within the range o the sorted hal.

3. I it is, we search that hal; otherwise, we search the other hal.

9. Modified Binary Search

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 13/24



1. Search in Rotated Sorted Array (LeetCode #33)

2. Find Minimum in Rotated Sorted Array (LeetCode #153)

3. Search a 2D Matrix II (LeetCode #240)

Binary Tree Traversal involves visiting all the nodes in a binary tree in a specic ord

PreOrder: root -> left -> right

InOrder: left -> root -> right

PostOrder: left -> right -> root

Problem Statement: Perorm inorder traversal o a binary tree.

Example:

Input: root = [1, null, 2, 3]

LeetCode Problems:

10. Binary Tree Traversal

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 14/24



Output: [1, 3, 2]

1. Inorder traversal visits nodes in the order: lef, root, right.

2. Use recursion or a stack to traverse the tree in this order.

1. PreOrder→ Binary Tree Paths (LeetCode #257)

2. InOrder→ Kth Smallest Element in a BST (LeetCode #230)

3. PostOrder→ Binary Tree Maximum Path Sum (LeetCode #124)

Depth-First Search (DFS) is a traversal technique that explores as ar down a branch

possible beore backtracking.

Use this pattern or exploring all paths or branches in graphs or trees.

Explanation:

LeetCode Problems:

11. Depth-First Search (DFS)

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 15/24



Find all paths rom the root to leaves in a binary tree.

Example:

Input: root = [1, 2, 3, null, 5]

Output: ["1->2->5", "1->3"]

1. Use recursion or a stack to traverse each path rom the root to the leaves.

2. Record each path as you traverse.

1. Clone Graph (LeetCode #133)

2. Path Sum II (LeetCode #113)

3. Course Schedule II (LeetCode #210)

Sample Problem:

Explanation:

LeetCode Problems:

12. Breadth-First Search (BFS)

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 16/24



Breadth-First Search (BFS) is a traversal technique that explores nodes level by leve
a tree or graph.

Use this pattern or nding the shortest paths in unweighted graphs or level-order
traversal in trees.

Perorm level-order traversal o a binary tree.

Example:

Input: root = [3, 9, 20, null, null, 15, 7]

Output: [[3], [9, 20], [15, 7]]

1. Use a queue to keep track o nodes at each level.

2. Traverse each level and add the children o the current nodes to the queue.

1. Binary Tree Level Order Traversal (LeetCode #102)

2. Rotting Oranges (LeetCode #994)

3. Word Ladder (LeetCode #127)

Sample Problem:

Explanation:

LeetCode Problems:

13. Matrix Traversal

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 17/24



Matrix Traversal involves traversing elements in a matrix using dierent technique
(DFS, BFS, etc.).

Use this pattern or problems involving traversing 2D grids or matrices horizontally
vertically or diagonally.

Perorm ood ll on a 2D grid. Change all the cells connected to the starting cell to
new color.

Example:

Input: image = [[1,1,1],[1,1,0],[1,0,1]], sr = 1, sc = 1, newColor =

Output: [[2,2,2],[2,2,0],[2,0,1]]

1. Use DFS or BFS to traverse the matrix starting rom the given cell.

Sample Problem:

Explanation:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 18/24



2. Change the color o the connected cells to the new color.

1. Flood Fill (LeetCode #733)

2. Number of Islands (LeetCode #200)

3. Surrounded Regions (LeetCode #130)

Backtracking explores all possible solutions and backtracks when a solution path a

Use this pattern when you need to nd all (or some) solutions to a problem that

satises given constraints. For example: combinatorial problems, such as generatin
permutations, combinations, or subsets.

LeetCode Problems:

14. Backtracking

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 19/24



Generate all permutations o a given list o numbers.

Example:

Input: nums = [1, 2, 3]

Output: [[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]]

1. Use recursion to generate permutations.

2. For each element, include it in the current permutation and recursively generat
the remaining permutations.

3. Backtrack when all permutations or a given path are generated.

1. Permutations (LeetCode #46)

2. Subsets (LeetCode #78)

3. N-Queens (LeetCode #51)

Explanation:

LeetCode Problems:

15. Dynamic Programming Patterns

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 20/24



Dynamic Programming (DP) involves breaking down problems into smaller
subproblems and solving them using a bottom-up or top-down approach.

Use this pattern or problems with overlapping subproblems and optimal substruct

DP itsel has multiple sub-patterns. Some o the most important ones are:

Fibonacci Numbers

0/1 Knapsack

Longest Common Subsequence (LCS)

Longest Increasing Subsequence (LIS)

Subset Sum

Matrix Chain Multiplication

For more Dynamic Programming Patterns, checkout my other article:

20 Patterns to Master Dynamic Programming
ASHISH PRATAP SINGH · 28 JULY 2024
Read full story

Sample Problem:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 21/24



Calculate the n-th Fibonacci number.

Example:

Input: n = 5

Output: 5 (The rst ve Fibonacci numbers are 0, 1, 1, 2, 3, 5)

1. Use a bottom-up approach to calculate the n-th Fibonacci number.

2. Start with the rst two numbers (0 and 1) and iterate to calculate the next numb

like (dp[i] = dp[i - 1] + dp[i - 2]).

1. Climbing Stairs (LeetCode #70)

2. House Robber (LeetCode #198)

3. Coin Change (LeetCode #322)

4. Longest Common Subsequence (LCS) (LeetCode #1143)

5. Longest Increasing Subsequence (LIS) (LeetCode #322)

6. Partition Equal Subset Sum (LeetCode #416)

Thank you so much or reading.

I you ound it valuable, hit a like and consider subscribing or more such conte
every week.

I you have any questions or suggestions, leave a comment.

This post is public so feel free to share it.

p

Explanation:

LeetCode Problems:

14/02/2025, 09:48 LeetCode was HARD until I Learned these 15 Patterns

https://blog.algomaster.io/p/15-leetcode-patterns 22/24


