Session 13: Recursion
Original Session
Date: 28 Nov 2024
Topic: Recursion
- Concept: Same function calling itself, but for smaller problem.
- Same function calling itself, but for smaller problem.
- When do we use it ?
- Bigger problem with smaller problems to which we know the solution.
- Keep on solving smaller problem and bigger problem gets solved.
- Two important points
- Base Condition
- Condition where we have to stop.
- Relation / Find Pattern
- Pattern is any relationship we need to form.
- Pattern is any relationship we need to form.
- Base Condition
- Concept: Head Recursion vs Tail Recursion
- Head Recursion - We go into recursion first then calculate in current function.
- Tail Recursion - We calculate in current function then go into recursive function.
- Concept: Recursion with Auxilary Space = Memoization, Iteration with Auxilary Space = Tabulation
Programs
- 509. Fibonacci Number
- Leetcode link
public int fib(int n) { if (n <= 1) { return n; } return fib(n-1) + fib(n-2); }
- Leetcode link
- Factorial.
- Example,
- 5! = 1 * 2 * 3 * 4 * 5
- 0! = 1
- Factorial
- GFG link
int fact(int n) { if (n == 0) { return 1; } return n*fact(n-1); }
- Example,
- Sum of Natural numbers using recursive
int sum(int n) { if (n == 1) { return 1; } return n + sum(n-1); }
- Power Function
int power(int value, int power) { if (power == 0) { return 1; } return value*power(value, power-1); }
- Sum of Digits 1963
int sumDigit(int n) { if (n<=0) { return 0; } return (n%10) + sumDigit(n/10); }
- Print Sum of all Subsets of given set
- GFG link
public ArrayList<Integer> subsetSums(int[] arr) { // code here ArrayList<Integer> subsetSum = new ArrayList(); subset(arr, 0, 0, arr.length-1, subsetSum); return subsetSum; } void subset(int[] arr, int sum, int l, int r, ArrayList<Integer> subsetSum) { if (l>r) { subsetSum.add(sum); return; } // include arr[l] subset(arr, sum + arr[l], l+1, r, subsetSum); // exclude arr[l] subset(arr, sum, l+1, r,subsetSum); }
- GFG link
- 62. Unique Paths
- Leetcode link
// Memoization Map<String, Integer> map = new HashMap(); public int uniquePaths(int m, int n) { if (m == 1 || n == 1) { return 1; } String key = m + "," + n; if (map.containsKey(key)) return map.get(key); Integer reuslt = uniquePaths(m, n-1) + uniquePaths(m-1, n); map.put(key, reuslt); return reuslt; }
- Leetcode link
- 22. Generate Parentheses
- Open < N = Add Open bracket, Open > Close = Add Close bracket
- Leetcode link
public List<String> generateParenthesis(int n) { List<String> ans = new ArrayList(); parenthesis(ans, n, 0, 0, ""); return ans; } void parenthesis(List<String> ans, int n, int open, int close, String s) { if (open == n && close == n) { ans.add(s); return; } if (open < n) { parenthesis(ans, n, open + 1, close, s + "("); } if (open > close) { parenthesis(ans, n, open, close + 1, s + ")"); } }