Session 34: Heap2

Original Session

Date: 23 Jan 2025

Topic: Heaps2

Concept: Merge intervals.

Concept: Median, middle value in set of data.

Programs

  1. 56. Merge Intervals
    1. leetcode here
    public int[][] merge(int[][] intervals) {
            
            Arrays.sort(intervals, (a,b) -> a[0] - b[0]);
            List<int[]> ans = new ArrayList();
            int[] temp = intervals[0];
    
            for (int i=1; i<intervals.length; i++) {
    
                if (intervals[i][0] <= temp[1]) {
                    temp[1] = Math.max(temp[1], intervals[i][1]);
                } else {
                    ans.add(temp);
                    temp = intervals[i];
                }
            }
            ans.add(temp);
            return ans.toArray(new int[ans.size()][2]);
        }

  1. 252. Meeting Rooms
    1. leetcode premium here
      1. Question:
        Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si < ei), determine if a person could attend all meetings.

        Case 1:
        input: [[0,30],[5,10],[15,20]] Output: false

        Case 2:
        input: [[7,10],[2,4]] Output: true

    public boolean canAttendAllMeetings(int[][] intervals) {
            
            Arrays.sort(intervals, (a,b) -> a[0] - b[0]);
            int[] temp = intervals[0];
    
            for (int i=1; i<intervals.length; i++) {
    
                if (intervals[i][0] <= temp[1]) {
                    return false;
                } else {
                    temp = intervals[i];
                }
            }
            return true;
        }

  1. Minimum Platforms
    1. GFG here
    int findPlatform(int arr[], int dep[]) {
            // add your code here
            
            int n = arr.length;
            Arrays.sort(arr);
            Arrays.sort(dep);
            
            int start = 0, end = 0, platform = 0, ans = 0;
            
            while (start < n && end < n) {
                
                if (arr[start] <= dep[end]) {
                    
                    platform ++;
                    start ++;
                } else {
                    
                    platform --;
                    end ++;
                }
                
                if (platform > ans) {
                    ans = platform;
                }
            }
            
            return ans;
        }

  1. 295. Find Median from Data Stream
    1. leetcode here
    1. Rules
      1. If MaxHeap is empty them add in maxHeap
      1. If Incoming Value is Smaller than top of the Max Heap → Push to Max Heap.
      1. MaxHeapSize - MinHeapSize ≤ 1
      1. MaxHeapSize will always ≥ MinHeapSize
    class MedianFinder {
    
        PriorityQueue<Integer> minHeap = new PriorityQueue();
        PriorityQueue<Integer> maxHeap = new PriorityQueue(Collections.reverseOrder());
    
        public MedianFinder() {
            
        }
        
        public void addNum(int num) {
            
            if (maxHeap.isEmpty()) {
                maxHeap.add(num);
            } else if (num <= maxHeap.peek()) {
                maxHeap.add(num);
            } else {
                minHeap.add(num);
            }
    
            if (maxHeap.size() - minHeap.size() > 1) {
                minHeap.add(maxHeap.poll());
            } else if (minHeap.size() > maxHeap.size()) {
                maxHeap.add(minHeap.poll());
            }
    
        }
        
        public double findMedian() {
            
            if (maxHeap.size() == minHeap.size()) {
                return (maxHeap.peek() + minHeap.peek()) / 2d;
            }
    
            return maxHeap.peek();
        }
    }