Session 47: Graph 4
Original Session
Date: 08 March 2025
Topic: Graph
Concept: BFS
Concept: Topological Sort.
Conditions: DAG (Directed Acyclic Graph)
Applied whenever there is a directed graph.
There should be no cycle.
Topological sort is, order in which directed graph can be accessed.
There can be more than 1 answer.
Concept: In-degree.
Number of incoming edges.
Concept: Adjacency List (out-degree).
This defines, each element, how many other elements it is directed to.
Programs
- 1926. Nearest Exit from Entrance in Maze
- leetcode here
public int nearestExit(char[][] maze, int[] entrance) { int m = maze.length; int n = maze[0].length; Queue<Pair<Integer, Integer>> queue = new LinkedList(); queue.add(new Pair(entrance[0], entrance[1])); int [][] dirs = { {-1, 0}, {0, -1}, {0, 1}, {1, 0} }; int step = 0; maze[entrance[0]][entrance[1]] = '+'; while(!queue.isEmpty()) { int size = queue.size(); for (int i=0; i<size; i++) { Pair<Integer, Integer> item = queue.remove(); for (int[] dir: dirs) { int pairM = item.getKey() + dir[0]; int pairN = item.getValue() + dir[1]; if (pairM < 0 || pairN < 0 || pairM >= m || pairN >= n || maze[pairM][pairN] == '+') { continue; } if (pairM == 0 || pairN == 0 || pairM == m-1 || pairN == n-1) { return step + 1; } queue.add(new Pair(pairM, pairN)); maze[pairM][pairN] = '+'; } } step ++; } return -1; }
- leetcode here
- 815. Bus Routes
- leetcode here
public int numBusesToDestination(int[][] routes, int source, int target) { if (source == target) { return 0; } Map<Integer, List<Integer>> adjList = new HashMap<>(); for (int route = 0; route < routes.length; route++) { for (int stop : routes[route]) { adjList.putIfAbsent(stop, new ArrayList<>()); adjList.get(stop).add(route); } } Queue<Integer> q = new LinkedList<>(); Set<Integer> vis = new HashSet<>(); if (!adjList.containsKey(source)) { // Edge case check return -1; } for (int route : adjList.get(source)) { q.offer(route); vis.add(route); } int busCount = 1; while (!q.isEmpty()) { // Improved queue condition int size = q.size(); for (int i = 0; i < size; i++) { int route = q.poll(); for (int stop : routes[route]) { if (stop == target) { return busCount; } for (int nextRoute : adjList.get(stop)) { if (!vis.contains(nextRoute)) { vis.add(nextRoute); q.offer(nextRoute); } } } } busCount++; } return -1; }
- leetcode here
- Topological sort
- GFG here
- Steps 1: Create In-degree array for all vertexes.
- Step 2: Put In-degree 0 in Queue.
- Step 3: Remove item from queue and print.
- Step 4: For this printed item, find adjacency vertexes.
- Step 5: For each adjacency vertex from Step 4, Subtract 1 from in-degree array.
- Step 6: All printed items is the Topological Order of DAG (Directed Acyclic Graph).
ArrayList<Integer> topologicalSort(ArrayList<ArrayList<Integer>> adj) { // Your code here int n = adj.size(); int[] top = new int[n]; int[] indegree = new int[n]; ArrayList<Integer> ans = new ArrayList<Integer>(); for (int i=0; i<n; i++) { for (Integer vertex: adj.get(i)) { indegree[vertex] ++; } } Queue<Integer> q = new LinkedList(); for (int i=0; i<indegree.length; i++) { if (indegree[i] == 0) { q.offer(i); } } while (!q.isEmpty()) { int item = q.remove(); ans.add(item); for (int i: adj.get(item)) { indegree[i] --; if (indegree[i] == 0) { q.offer(i); } } } return ans; }
- GFG here